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Hormone receptors are a necessary (although not sufficient) part of the process through which
hormones like corticosterone create physiological responses. However, it is currently unknown to
what extent receptor concentrations across different target tissues may be correlated within in-
dividual animals. In this study, we examined this question using a large dataset of radioligand
binding data for glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs) in 13 dif-
ferent tissues in the house sparrow (Passer domesticus) (n � 72). Our data revealed that individual
house sparrows tended to exhibit higher or lower receptor binding across all tissues, which could
be part of what creates the physiological and behavioral syndromes associated with different
hormonal profiles. However, although statistically significant, the correlations between tissues
were very weak. Thus, when each tissue was independently regressed on receptor concentrations in
the other tissues, multivariate analysis revealed significant relationships only for sc fat (for GR) and
whole brain, hippocampus, kidney, omental fat, and sc fat (for MR). We also found significant pairwise
correlations only between receptor concentrations in brain and hippocampus, and brain and kidney
(both for MR). This research reveals that although there are generalized individual consistencies in GR
and MR concentrations, possibly due to such factors as hormonal regulation and genetic effects, the
ability of 2 different tissues to respond to the same hormonal signal appears to be affected by addi-
tional factors that remain to be identified. (Endocrinology 156: 1354–1361, 2015)

Hormones play critical roles in transmuting environ-
mental signals into physiological actions, acting

across many different tissues to coordinate function and
increase fitness (1). The hypothalamus-pituitary-adrenal
axis, which secretes glucocorticoid hormones (cortisol
and/or corticosterone, depending on the species, hereafter
CORT), affects nearly every tissue in the body (2–4) and
shows remarkable conservation across different vertebrate
lineages (5). At baseline concentrations, CORT helps regu-
late metabolism, cognition, and immune function (6–8); at
higher concentrations, it is a key mediator of the physiolog-
ical stress response (9). In both mammals and birds, CORT
acts primarily by binding to 2 populations of cytosolic re-
ceptors, the higher-affinity mineralocorticoid receptor (MR)

and lower-affinity glucocorticoid receptor (GR) (3, 10–13).
Upon ligand binding, these receptors change conformation,
dissociate from their heat shock proteins, form dimers, and
enter the cell nucleus (12, 14). The activated receptors then
bind to specific response elements in DNA and affect expres-
sion at hundreds of gene loci, causing changes in a wide va-
riety of physiological and behavioral traits (15).

Receptor number is highly correlated with the magni-
tude of the CORT-mediated response on downstream
gene expression (16–18). Because of the approximately
10-fold affinity difference between MR and GR, MR is
thought to mediate many of the baseline effects of CORT,
whereas at higher hormone concentrations, GR binding
becomes more important (19, 20). MR’s distribution is
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also more limited than is the ubiquitous GR. For example, in
mammalian and avian brain, MR is mostly confined to hip-
pocampus,whereasGRis foundthroughout thebrain (21,22).
In some tissues, MR and/or GR may also bind to other steroid
ligands, such as aldosterone and progesterone (23, 24).

It is currently poorly known to what extent responses to
circulating hormone are coordinated at the receptor level
across the many tissues of individual animals. There are sev-
eral reasons we might expect to see across-tissue correlations
in GR and MR density within an individual. First of all,
different tissueswithinanindividualallhavethesamegenetic
background, and several studies have found a genetic influ-
enceoncorticosteroidresponsivenessandregulation(25,26)
as well as on the magnitude of expression of particular pro-
teins (27). Secondly, GR and MR concentrations in different
target tissues are at least partly regulated by circulating
CORT titers. Many studies have shown that as CORT con-
centrations increase, receptor concentrations decrease, and
vice versa (28–33). For example, both the administration of
repeated stressors and exogenous CORT to rats caused de-
creased receptor concentrations in the hippocampus and
amygdala (34). This CORT-induced regulation of receptors
can occur at transcriptional, posttranscriptional, and post-
translational levels (14, 35).

In contrast, there are also reasons we might not expect
to see particularly strong correlations in GR and MR den-
sity across different tissues. On closer examination, many
of the studies mentioned above paint a more complicated
picture than just simple regulation of receptors by ligand.
In several rodent studies where exposure to high circulat-
ing CORT caused down-regulation of receptors in brain
areas suchashippocampusandamygdala, researchers found
no effect on receptor concentrations in tissues such as the

hypothalamus or pituitary gland (28, 32, 34). GR and MR
may also respond to adrenalectomy differently, suggesting
that GR may be more subject to auto-regulation than is MR
(36). In some cases, GR expression can actually increase in
response to ligand binding, which may be important in ini-
tiating CORT-induced apoptosis (14). All of this is evidence
for a certain amount of independence in the regulation of
receptor concentrations in different tissues.

Most studies examining GR and MR in multiple tis-
sue types have only examined different regions of the
brain, the pituitary, and perhaps 1 or 2 peripheral tissues.
However, as mentioned previously, these receptors are
found throughout the body (2, 3), and it is possible that
the subset of tissues that have been examined is not rep-
resentative of receptor regulation. Furthermore, most of
these studies were conducted in laboratory rats, and arti-
ficial selection during the process of domestication can
alter endocrine physiology (26, 37).

In this study, we used a dataset of receptor binding in
72 house sparrows (Passer domesticus) to examine indi-
vidual correlations in GR and MR concentrations across
13 different tissues. Our first objective was to determine
whether animals tended to have high or low GR or MR
density across all tissue types (Figure 1). We predicted that
we would see significant differences between individuals
in receptor density and consistency within individuals
across tissue types. To explore the between-tissue rela-
tionships further, our second objective was to determine
whether suites of tissues with related functions (such as the
metabolic tissues we examined, liver, fat, muscle, and kid-
ney) would have significantly correlated receptor densi-
ties. Consequently, we examined all pairwise correlations
among receptor concentrations in different tissues and

used multivariate regression to pre-
dict receptor density in each tissue
type based on an animal’s other tis-
sues. We predicted that we would
see significant pairwise correlations
among tissues of the same function
(eg, metabolic, immune, etc) and
type (eg, pectoralis and gastrocne-
mius muscle), but that otherwise, re-
ceptor concentrations would not be
highly consistent from one tissue
type to another.

Materials and Methods

Study subjects
All procedures involving birds were

performed according to Association for
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Figure 1. A, In a hypothetical group of 6 individuals (represented as dots), if receptor
concentrations were correlated across all tissues within an individual, we would expect that an
individual with high receptor density in one tissue would also have high receptor density across 4
other tissues (gray dots). B, If receptor concentrations were completely independent from tissue
type to tissue type, we would expect that an individual with high receptor density in 1 tissue
would have low or average receptor density in other tissues (gray dots).
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Assessment and Accreditation of Laboratory Animal Care guide-
lines of humane animal care and approved by the Tufts Univer-
sity Institutional Animal Care and Use Committee. We caught 72
wild house sparrows, 12 each at 6 different times of year: during
molt (September 6–19, 2010), early winter (December 12–15,
2010), late winter (February 1–14, 2011), pre-egg-laying (March
31 to April 5, 2011), breeding (May 23–24, 2011), and late
breeding (July 12–18, 2011). Equal numbers of males and fe-
males were used at each stage. For additional information on
study subjects, please see Ref. 38 and Supplemental Methods.

Tissue processing and receptor binding assays
We used radioligand binding assays to quantify GR and MR

binding in 13 different house sparrow tissues: whole brain, hip-
pocampus, liver, pectoralis muscle, gastrocnemius muscle, sc fat
from the furcula, omental fat from the abdomen, spleen, kidneys,
testes or ovary (depending on sex), belly skin, and bib skin. Re-
ceptor assays have been fully described and validated for each
tissue type (see Supplemental Methods, Supplemental Tables
1–3, and Supplemental Figures 1 and 2 for more details). These
data were originally collected to test different hypotheses for
seasonal regulation of CORT by examining receptor concentra-
tions (Refs. 39–42 and see also Supplemental Figures 3–14).

Statistical methods
All analyses were run using Stata version 13.1 (StataCorp).

We used the “mixed” command with restricted maximum like-
lihood to estimate a linear mixed model of receptor concentra-
tion with fixed effects at the tissue level, random effects at the
bird level, and residual variance allowed to differ across tissues
(43–46). We included sex and life history stage as fixed effects in
the model, because these have both been shown to affect receptor
density in house sparrows (see the Supplemental Methods for
more details) (39–41). This type of model assumes that individ-
ual-specific effects are orthogonal to the other covariates of the
model and that errors are normally distributed (43–46), and
these assumptions were satisfied by the data.

We analyzed our dataset in 4 different ways. First of all, to
determine whether there was a significant individual bird effect
on receptor concentrations in all 13 tissues, we carried out a
likelihood ratio test (43–45) comparing the log-likelihood of our
mixed model with bird-level random effects against that of the
nested model without bird-level fixed effects. A significant result
here would tell us that receptor concentrations in all tissues were
significantly affected by which bird those tissues came from.
Secondly, when we found significant individual effects on recep-
tor concentrations, we ran ordinary least-squares regressions of
GR and MR concentrations on fixed effects at the bird level (47,
48). This analysis provided simple and easily interpretable r2

measures of the contribution of bird-level variation to receptor
concentrations (ie, the strength of significant individual effects
on receptor concentrations). Third, we explored which individ-
ual tissues had receptor concentrations that were the most and
least correlated with the others using separate multivariate re-
gressions of receptor concentrations in 1 tissue with receptor
concentrations in all of the same bird’s other tissues and exam-
ining the resulting r2 values and F tests of joint significance (48,
49). This analysis elucidated which individual tissues were the
most (and least) correlated with all other tissues in terms of re-
ceptor density. Finally, we also calculated pairwise correlations

using Spearman’s rho for all tissue pairs for both GR and MR
concentrations (48, 49). The final 2 analyses were only done
using data from the 11 tissues for which we had samples from
all 72 birds (sample size was only 18 individuals each for testes
and ovary, see the Supplemental Methods for more informa-
tion). For the latter analysis, we used the Benjamini-Hochberg
procedure to control the false discovery rate from multiple
comparisons (50).

Results

The likelihood ratio test of the random effects model re-
jected the null hypothesis of no bird-level variation in GR
(�1

2 � 7.26, P � .007) (Supplemental Table 4) and MR
(�1

2 � 14.43, P � .0001) (Supplemental Table 4) across all
tissues. The data thus provide strong evidence for an in-
dividual bird effect (ie, differences among birds) in both
GR and MR concentrations when all 13 tissues are in the
model. However, a regression of the raw receptor data on
bird-level fixed-effects indicated that the amount of vari-
ation in overall GR or MR density explained by this in-
dividual effect was small (r2 � 0.062 for GR, r2 � 0.083

Table 1. Results of Separate Multivariate Regressions
and r2 and F Tests of Joint Significance Examining the
Degree to Which Receptor Concentrations in Individual
Tissues of House Sparrows (P. domesticus; n � 72) Could
Be Explained by Receptor Concentrations in All Other
Tissues

Dependent Variable R2 F Statistic P Value

GR
Belly skin 0.15 0.90 .54
Bib skin 0.15 0.85 .59
Brain 0.23 1.50 .17
Gastrocnemius 0.13 0.74 .69
Hippocampus 0.18 1.10 .38
Omental fat 0.15 0.86 .57
Kidney 0.19 1.16 .34
Liver 0.27 1.85 .076
Pectoralis 0.19 1.16 .34
Spleen 0.25 1.68 .11
Subcutaneous fat 0.29 2.04 .048a

MR
Belly skin 0.18 1.12 .36
Bib skin 0.18 1.06 .41
Brain 0.34 2.57 .014a

Gastrocnemius 0.19 1.20 .31
Hippocampus 0.50 4.96 �.0001c

Omental fat 0.29 2.03 .0499a

Kidney 0.42 3.59 .0012b

Liver 0.29 2.02 .051
Pectoralis 0.28 1.98 .056
Spleen 0.25 1.62 .13
Subcutaneous fat 0.37 2.95 .0055b

a P � .05.
b P � .01.
c P � .001.
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for MR). Even when we rescaled GR and MR data to
remove tissue-level mean and variance differences (51),
the amount of variation explained by these individual ef-
fects was still relatively low (r2 � 0.16 for GR; r2 � 0.20
for MR). Consequently, we supported our prediction that
significant individual differences would be found, but
these differences were small.

Using separate multivariate regressions and r2 and F
tests of joint significance for each tissue independently
(except for ovary and testes), we found that MR in 5 of the
tissues (whole brain, hippocampus, kidney, omental fat,
and sc fat) could be significantly predicted by the MR
concentrations in the other 10 tissues (Table 1). Liver and
pectoralis MR were marginally significant (P � .06), and
belly skin and bib skin MR receptor concentrations were
consistently independent of receptor density in other tis-
sues. For GR, only sc fat receptor density was significantly
predicted by receptor concentrations in the other 10 tis-
sues (Table 1). Belly skin, bib skin, gastrocnemius muscle,
and omental fat GR receptor concentrations were consis-
tently independent of receptor density in other tissues.

Examining pairwise correlations using Spearman’s rho,
we found no significant correlations between GR concen-
trations in pairs of tissues after multiple comparisons cor-
rections (Table 2 and Figure 2). However, we did find
significant pairwise correlations between MR concentra-
tions in hippocampus and whole brain and between whole
brain and kidney (Table 3 and Figure 3).

Discussion

A mixed-model analysis of our extensive dataset of radio-
ligand binding in 13 different tissues from 72 individuals
revealed that individual house sparrows did tend to ex-
hibit higher or lower GR and MR density across all tissues,

although subsequent regression analyses and pairwise
comparisons of receptor density in all tissue pairs indi-
cated that this overall effect was very weak. Hormonal
mediators, including CORT titers, often show enormous
intraspecific variation (52–54). House sparrows caught at
the same times and places as the sparrows used in the
present study had baseline CORT titers that commonly
varied as much as 100-fold among individuals caught dur-
ing the same life history stages (eg, 0.02 ng/mL compared
with 2 ng/mL) and stress-induced CORT titers that com-
monly varied as much as 6-fold (eg, 12 ng/mL compared
with 69 ng/mL) (38). Because GR and MR concentrations
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Figure 2. A graph depicting all the positive pairwise correlations
between glucocorticoid receptors in pairs of tissues, with the tissues
located in their approximate locations, as depicted by dots. The relative
thickness of the lines represents the relative strength of the positive
correlations, although it is important to note that after multiple
comparisons corrections, no pairs of tissues were significantly
correlated. Table 2 gives numerical values for all correlations (positive
and negative) between glucocorticoid receptors in all pairs of tissues.
House sparrow silhouette created by User 4028mdk09 from an original
photo by Andreas Plank and made available from Wikimedia
Commons under the Creative Commons Attribution-ShareAlike license
(CC-BY-SA).

Table 2. Matrix of All the Pairwise Correlations Between Glucocorticoid Receptor Concentrations in Pairs of Tissues
From House Sparrows (P. domesticus, n � 72)

Belly
Skin

Bib
Skin Brain Gastroc Hippo

Oment
Fat Kidney Liver Pect Spleen

Subcutaneous
Fat

Belly skin 1
Bib skin 0.073 1
Brain �0.13 0.063 1
Gastroc �0.004 0.153 0.096 1
Hippo 0.014 �0.079 0.27 0.10 1
Oment fat 0.058 �0.005 �0.068 0.08 �0.028 1
Kidney �0.076 0.079 0.14 0.18 0.091 0.026 1
Liver �0.072 �0.13 �0.060 0.13 0.23 �0.22 �0.15 1
Pect �0.11 0.17 0.36 0.19 0.11 0.062 0.26 �0.070 1
Spleen �0.14 0.13 0.28 0.06 0.18 �0.19 �0.041 0.29 0.14 1
Subcutaneous fat �0.30 �0.022 �0.093 0.12 0.22 0.002 0.20 0.30 0.12 �0.13 1

Belly skin, bib skin, brain, gastrocnemius (Gastroc), hippocampus (Hippo), omental fat (Oment fat), kidney, liver, pectoralis (Pect), spleen, and sc fat
were determined using Spearman’s rho. After multiple comparisons corrections, receptor concentrations were not correlated in any tissue pairs.
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are regulated at least in part by circulating CORT (14, 35),
we would expect these large interindividual differences in
CORT titers to impact the body’s overall receptor con-
centrations. In fact, having relatively higher or lower
CORT titers, and relatively fewer or more receptors
throughout the body, may be part of what creates the
physiological and behavioral syndromes associated with
different hormonal profiles (55–57).

However, individual effects explained only a small per-
centage of the overall variation in receptor concentrations.
Because this overall effect was so weak, when we took

away the statistical power provided by 816 samples for
each receptor type (GR and MR), and looked for relation-
ships between individual tissue pairs (like brain and liver,
where there were only a combined 144 samples to be com-
pared, which magnified both the variation between indi-
vidual animals and the inherent variability associated with
the radioligand binding assays), there were very few sig-
nificant pairwise correlations. This indicates that knowing
the density of GR or MR in only one tissue had little pre-
dictive value for other tissue types (Table 1). Thus, al-
though overall there were significant individual effects on
GR and MR density, receptor concentrations in any one
tissue were not strongly correlated with receptor concen-
trations in other tissues, suggesting that CORT titers are
not the only (or even the main) driver of MR and GR
concentrations.

Generally, our data suggest more similarity in MR con-
centrations across different tissue types than in GR concen-
trations. Only in sc fat was GR density significantly corre-
lated with other tissues, in contrast to whole brain,
hippocampus, kidney, omental fat, and sc fat for MR. In our
pairwise analysis, no pairs of tissues showed significant cor-
relations in GR receptor density, although hippocampus and
wholebrain,andwholebrainandkidney, showedsignificant
positive correlations in MR receptor density. In mammals
and birds, much of the MR in the brain is found in the hip-
pocampus (21, 22), so finding a correlation between MR
density in hippocampus from one hemisphere of the brain
and in whole brain from the other hemisphere is not a sur-
prise; in fact, thehigher thepercentageof totalbrainMRthat
are in the hippocampus, the stronger this correlation will be
(assuming right-left symmetry).

Different tissues with the same function (eg, metabolic
tissues), and even regions of the same tissue type (eg, pec-
toralis vs gastrocnemius muscle), did not show significant
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Figure 3. A graph depicting all the positive pairwise correlations
between mineralocorticoid receptors in pairs of tissues, with the tissues
located in their approximate locations, as depicted by dots. The relative
thickness of the lines represents the relative strength of the positive
correlations, although it is important to note that after multiple
comparisons corrections, the only significant pairwise correlations are
the ones between whole brain and hippocampus and brain and
kidney. Table 3 gives numerical values for all correlations (positive and
negative) between mineralocorticoid receptors in all pairs of tissues.
House sparrow silhouette created by User 4028mdk09 from an original
photo by Andreas Plank and made available from Wikimedia
Commons under the Creative Commons Attribution-ShareAlike license
(CC-BY-SA).

Table 3. Matrix of All the Pairwise Correlations Between Mineralocorticoid Receptor Concentrations in Pairs of
Tissues From House Sparrows (P. domesticus, n � 72)

Belly
Skin

Bib
Skin Brain Gastroc Hippo

Oment
Fat Kidney Liver Pect Spleen

Subcutaneous
Fat

Belly skin 1
Bib skin 0.16 1
Brain �0.16 0.15 1
Gastroc 0.34 0.22 �0.075 1
Hippo 0.036 0.19 0.54a 0.20 1
Oment fat 0.14 �0.027 0.064 �0.058 �0.021 1
Kidney 0.060 0.20 0.45a 0.17 0.38 �0.055 1
Liver 0.16 0.082 �0.037 �0.11 �0.15 �0.19 0.11 1
Pect 0.039 0.022 0.19 0.064 0.39 �0.099 0.25 �0.075 1
Spleen �0.20 �0.094 0.32 0.010 0.35 0.034 0.19 0.023 0.17 1
Subcutaneous fat 0.018 �0.036 0.17 0.062 �0.11 0.31 0.11 0.18 �0.14 0.11 1

Belly skin, bib skin, brain, gastrocnemius (Gastroc), hippocampus (Hippo), omental fat (Oment fat), kidney, liver, pectoralis (Pect), spleen, and sc fat
were determined using Spearman’s rho. Numbers in bold with superscript letter a indicate significance at the P � .05 level after multiple-
comparisons corrections.

1358 Lattin et al Are GR and MR Correlated Across Tissues? Endocrinology, April 2015, 156(4):1354–1361

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 06 April 2015. at 11:05 For personal use only. No other uses without permission. . All rights reserved.



pairwise correlations in GR or MR densities, in contrast to
our predictions that they would. These results are consis-
tent, however, with past studies revealing remarkable het-
erogeneity in the response of different tissues and regions
of the same tissue type to changes in CORT (32, 58, 59).
For example, in a previous study examining changes in
CORT receptor density, adrenalectomized rats increased
CORT receptors in all 8 tissues examined, but the mag-
nitude of this increase varied 30-fold among tissues and
was unrelated to initial receptor density (60). Overall, our
data suggest that although GR and MR densities may be
generally higher or lower across all tissues within an in-
dividual, this is not a homogeneous effect, and different
tissues, and even different regions of the same tissue, can
vary greatly in receptor densities.

Aside from receptor concentrations, many other im-
portant factors can also influence CORT’s actions. These
include diurnal variation in CORT release (61, 62), cir-
culating concentrations of plasma binding proteins such
as corticosterone binding globulin and albumin (63, 64),
local production of CORT (65), the presence of 11�-hy-
droxysteroid dehydrogenase enzymes that convert CORT
to an inactive metabolite or inactive metabolites to CORT
(66–69), and tissue-specific variation in nuclear receptor
coactivators and corepressors (70–72). This means that
although our study contributes to our understanding of
the differential effects of CORT across different tissues, it
is only a start, and future studies are necessary to clarify
additional details of the complex process through which
CORT creates physiological responses. Binding capacity
can be a useful measure of receptor density, but we did not
measure expression changes in any of the many genes reg-
ulated by CORT, or any other measure of CORT’s effect
on different tissues. And although this study has the ad-
vantage of reflecting the natural interindividual variation
found in a wild animal species, a future study using adre-
nalectomized laboratory rats given various replacement
doses of CORT could lead to a much clearer picture of
hormone and receptor coregulation.

In general, data from comparative studies suggest that
evolutionary change occurs more often via alterations to
the target tissue (changes in receptors, enzymes, etc) than
by altering the hormone signal (73–79). These kinds of
studies help elucidate the complex nature of hormonal
systems. Although hormone systems act across multiple
levels (eg, hormone, receptor, gene, etc) to produce a phe-
notype, the different components of these systems may
also be somewhat independently regulated to allow ani-
mals to mount flexible and diverse responses to their
changing environments. The fact that different compo-
nents of hormonal systems may be regulated somewhat
independently also emphasizes the importance of exam-

ining factors other than plasma hormone titers in under-
standing hormonal actions, whether an investigator is in-
terested in a behavioral output or a physiological one.
Overall, this study suggests that the idea that hormone
titers and receptor concentrations will be inversely pro-
portional is overly simplistic and reveals that although
there are individual effects on receptor concentrations due
perhaps to such factors as hormonal regulation and ge-
netic effects, the ability of 2 different tissues to respond to
the same CORT signal may be heavily affected by addi-
tional factors that remain to be elucidated.
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